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The classical spatial representation of meteor streams is an 
elliptical torus with variable cross-section. The position of this torus 
in space is determined by the mean orbit elements that may be obtained 
directly from observations of individual meteor stream particles when 
crossed by the earth. Since the orbits of individual particles of a stream 
differ from each other, the distance between them on a plane normal to the 
mean orbit of elliptical torus forms some area, i.e., a cross-section. The 
size and form of these cross-sections change with the change of the 
direction among the mean orbit and are completely defined by the dispersion 
values of the orbit elements in a stream. 

This paper deals with an attempt to create an analytical method that 
would permit description of the spatial and time parameters of meteor 
streams, i.e., the form and size of their cross-sections, density of 
incident flux and their variations along the mean orbit and in time. In 
this case, the stream is considered as a continuous flux rather than a set 
of individual particles. 

The solution to this problem lies in creation of a model of a stream 
structure that depends on the type of parental matter decay and the stage 
of a stream evolution. We suggest the following three models giving 
analytical descriptions of the spatial structure of a meteor stream 
(ANDREEV 1984a, 198hb). 

1. The stream is comparatively young and perturbations have not yet 
changed its structure. It is clear that in such a model all the orbits 
intersect at the ejection point. 

2. The stream is comparatively old and the perturbations now show up 
as changes of the meteoroid orbit elements with their orbits intersecting, 
not at the ejection point but along some arc. 

3 .  The stream is so old that it is impossible to distinguish the 
common area of crossing orbits but a distinct meteor stream is still 
spatially defined. 

Since the analytical developments of the above models are about the 
same and the final formulas in some cases are rather bulky, we shall 
confine our exposition of the elements of our spatial structure theory 
using as an example only the first model. 

Suppose the stream is formed by means of the parental body decay 
within an infinitesimal volume of its original orbit. Let a, e, i, 5 2 ,  w be 
Kepler's orbit elements of parental matter having the velocity V at the 
decay point. Analysis shows that convenient formulas for estimating the 
velocity increment of particle orbital elements as compared with the comet 
orbit may be obtained, if the comet orbit plane is taken as the main plane 
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and the apex of comet motion is taken as the main direction. Let u be the 
velocity vector magnitude of matter ejection directed at an angle p to the 
main plane with a projection on the plane of the comet orbit making an 
azimuthal angle a with the direction to the apex. Vector addition of 
velocities gives the following variation of the velocity magnitude and its 
direction 

112 _ -  AV u2 u - (1 + y + 2 - cos a - cos p )  V - 1, 
V 

-'I2 * sin a * cos 6 ( 2 )  
2 2  sin A$ = U(V + U + 2 W  cos a * cos p )  

In the formula ( 2 ) ,  A$ is the change of angle of J, between the radius- 
vector of r and the velocity vector of V. 

Using the expressions (1, 2 )  we obtained the following correlations 
for estimating the variation of orbit elements: 

a) increments connected with reorientation of the velocity vector in 
the orbit plane: 

2 
Aa = 2 - V AV, a 

lJ 

Aw = 2 sin v - ( 2 e  + cos v t e2 cos V >  (1 + e cos v>- '  * eV e '  

b) increments connected with the reorientation of the orbit plane: 

Ai = U - cos (V + w) - sin p ,  
JlJP 

U * sin (V + w)  cosec i - sin p = tan (V t w) - cosec i - Ai, 

( 4 )  

U C tan i sin (V + w )  sin p = - AS2 * cos i A w = -  

The formulas given in the systems ( 3  and 4 )  enable one to analyze 
JG 

easily the orbit elements changes at ejection. 

The formulas ( 1 ,  2 ,  3 ,  4 )  give the change of an individual particle 
orbit. For formation of a stream of particles, it is necessary to vary 
these relations using different values of u, a, @ (depending on the 
required peculiarities of stream formation) and to find the stream's mean 
orbit and the dispersion of orbit elements. Suppose particles are ejected 
so that the relative velocities of particles and their directions are 
within the intervals of U ? au, a f oa, p f a @ .  Then the elements of the 
mean orbit of a stream are (U << V) 
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2 - 2a a = a + - UV - cos a * cos p ,  u 

rU e = e + 2 1 (e + cos V) cos a cos p sin v - sin a * cos p ,  

rU i = i t - cos (V + w )  - sin p, 
JPP 

( 5 )  
- w = w + - s i n V ~ c o s a ~ c o s ~ - ~ ( 1 + -  2u U cos E rU ) sin a - cos p - - - 

eV e JPP 

Q = Q t 

and the orbit element dispersions in the stream are defined by means of 
differentiation of (5) with respect to u, a, 8.  

rU sin(V t w) cosec i * sin p ,  cos E = (e t cos V)(I + e cos v ) ,  -1 JG 

If the ejection is considered isotropic rather than directed then the 
formulas for determining the root-mean-square dispersions of the orbit 
elements will look like: 

sin2  VI"^, 
2 1/2 r - (02u + u - cos (v  + w ) ,  on = tan (v  + w )  cosec i - ai. 

J;;;; 2 ai = 

2 
1 + * sin2 (V + w )  * 

1/2 
cotan2 J , 

and the mean orbit will coincide with that of the parental body. 

The formulas (1-5) make it possible to model analytically any matter 
ejection out of a parental body, and to estimate the mean orbit and the 
orbit element dispersions about it. However, to study the meteor stream 
evolution as a whole, it is necessary to have the appropriate analytical 
formulas to calculate the mean orbit evolution and orbit elements 
dispersions. For the mean orbit, this calculation is not difficult. In 
studying the evolution of meteor streams during long time intervals, only 
secular perturbations that generate systematic change of stream 
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characteristics are of interest. For numerical investigation of the 
secular evolution of the mean orbit, one can apply the well-known Halphen- 
Goryachev method. But it is very difficult to calculate the secular 
evolution of the orbit element dispersions. However, as our investigations 
have shown, this problem may be solved by means of intermediate 
calculations using the Halphen-Goryachev algorithm for each step in time. 
Indeed, if the initial values of orbit elements and their dispersions are 
denoted by the zero subscript, new values of the Keplerian elements at the 
time t = t + At will equal x(t) = xo + Ax, where x is any of the elements. 
It is not 8ifficult then to conclude that the value of the dispersions of 
element x by the moment of t can be found from the expression: 

where particular derivatives related to orbit elements can be easily found 
by the Eulerian equations. 

The next step is to obtain the analytical dependences of the form and 
size of cross-sections and their changes in space and time. The derivation 
of these formulas depends entirely on the model of stream origin and the 
evolutionary stage at which it occurs (ANDREEV, 1984). In particular, for 
a stream arising as a result of a "point" decay, the formula for 
determining the cross-sectional area may be obtained on the basis of 
independence of relative distance between orbits in the mean orbit plane 
and the plane orthogonal to it, i.e., 

S = T - A * B = IT - Ar sin J, * r * A$ * sin ( V t w  - c), ( 7 )  

where A = Ar sin J, is the size ("width") of the cross-section in the 
orbit plane, B = r * A $  * sin (V + w - c) is the stream's thickness", c is 
an angular distance of decay point from the ascending node and A$ is a 
dihedral angle between extreme orbits at the ejection point. The radius- 
vector variation in an arbitrary direction may be obtained by means of the 
expression: 

where radius-vector partial derivatives related to elements occur provided 
that v(a, e, w )  = const. Representative values A$ and c,may be obtained 
both analytically and by analyzing orbit catalogues. In particular, 
applying Delambert's formulas we have 

L 

Upon substitution of 

(v) = ITr A$ 1 sin J, sin 

2 112 

2 

+ cotan JI - ow)  ] 

( 7 )  and (8) we shall have 

oa 2 2 oe 2 v + w + c) 1 [(--) + (e + cos E) (7) 1 -e 
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The formula (9) makes it possible to determine the cross-section. The 
mean orbit elements and their dispersions are calculated in the expression 
(9) according to expression (5) or are determined from existing orbit 
catalogues. Application of the above relations permits investigation of 
the stream evolution as a whole. If it is supposed that the number of 
particles in a steam does not change over time and denote the incident flux 
density by Q, we have the following explicit expression: 

which makes it possible to estimate the flux density change not only along 
the orbit (when it is constant) but in time as well. That is the main 
factor for estimating the meteor stream dynamics as a whole rather than 
just its individual orbits. It is clear that the space structure and 
dynamics of comparatively young meteor streams or streams of a common 
origin but which 'are only slightly susceptible to perturbations can be 
investigated by means of the above expressions. It can be expected that 
among modern meteor streams there are those to which the above method can 
be applied. To this end, only those streams have been considered which 
have sufficient orbit statistics. It turns out that the majority of modern 
active meteor streams are characterized by signs of parent body decay 
within a relatively small vicinity of their mean orbits. 

Table 2 presents the ecliptic coordinates ( A  B,) of the common 
"point" of orbit crossing, the nodal distance value C, radius-vector of 
this point r and its true anomaly v . 

C' 

C' 

Table 2. 

Coordinates of common range of crcssing orbits 
for some meteor streams 

Perseids Gemini ds Orioids S -Taut- ids 
~~~ 

Xc , degree 80 f 5 190 f 11 307 f 3 130 f 10 

Bc , degree 74 f 2 -22 f 1 15 f 7 5 * 1  

C , degree 77 f 2 -72 f 10 a2 f a 79 f 6 

Vc , degree -74 f 4 -40 f 10 0 f 10 -40 f 12 

rc ' a.u. 1.5 f 0.1 0.16 f 0.01 0.6 f 0.3 0.4 f 0.1 

It should be noted that in spite of insufficient accuracy of the present 
orbit catalogues, the errors in determining the point C are insignificant 
and the arc length, where the supposed decay of a parent body occured, does 
not exceed 0.1 per cent of the orbit length for the showers under 
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consideration. Hence, knowing from observation the structure peculiarities 
of the above meteor streams, a space model for these streams can be 
constructed for a given moment by means of the relations (1-10). The main 
direction and ejection rate of matter from their parent bodies can be 
determined and the evolution of these streams as affected by gravitational 
and nongravitational forces can be traced. 
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